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A B S T R A C T

Aging of lithium-ion battery cells reduces a battery electric vehicle’s achievable range, power capabilities and
resale value. Therefore, suitable characterization methods for monitoring the battery pack’s state of health are
of high interest to academia and industry and are subject to current research. On cell level under laboratory
conditions, differential voltage and incremental capacity analysis are established characterization methods for
analyzing battery aging. In this article, experiments are conducted on the battery electric vehicles Volkswagen
ID.3 and Tesla Model 3, examining the transferability of differential voltage and incremental capacity analysis
from cell to vehicle level. Hereby, the vehicles are monitored during AC charging, ensuring applicability in
real-life scenarios. Overall, transferability from cell to vehicle level is given as aging-related characteristics
can be detected in vehicle measurements. Hereby, loss of lithium inventory is identified as the primary cause
for capacity loss in the usage time of these vehicles. Both methods have limitations, such as data quality
restrictions or vehicle specific behavior, but are suitable as diagnostics tools that can enable a vehicle level
state of health estimation.
1. Introduction

The market share of battery electric vehicles (BEVs) is exponentially
increasing, with the European Union ambitiously aiming to reach 30
million zero-emission vehicles by the year 2030 to further electrify the
mobility sector [1]. In these BEVs, the energy storage is mostly made
up of heavy, voluminous and expensive lithium-ion battery (LIB) packs
to satisfy range and power requirements [2]. However, throughout a
vehicle’s lifetime, the condition of the battery pack deteriorates due to
aging, usually expressed by the battery pack’s state of health (SOH) [3].
Hereby, a SOH decrease can be measured as a reduced capacity and an
increase of the battery cells’ inner resistance [4]. Aging is divided into
calendar aging during resting periods of the battery and cycle aging
when under load [4–6]. In real life applications both aging mechanisms
occur simultaneously leading to complex aging patterns [7]. From a
customer’s point of view, aging materializes in reduced range and
power capabilities [4]. Therefore, regular status updates of the battery
pack are relevant for the driver or fleet operator [8]. Furthermore,
operators of a BEV fleet are interested in the vehicles’ individual SOH to
detect outliers and utilize predictive maintenance methods like schedul-
ing visits at the workshop for increased dispatchability [9]. Moreover,

∗ Corresponding author.
E-mail address: philip.bilfinger@tum.de (P. Bilfinger).

BEVs will also be available for sale second hand after their first usage
phase. Potential buyers of second hand cars might refrain from pur-
chase due to an unknown SOH [10,11]. Also, insurance companies are
interested in the SOH to determine premiums or the payout in case of a
battery failure, especially regarding warranty claims [8]. Furthermore,
business decisions on either keeping, selling, replacing or recycling a
BEV can be taken based on the current SOH [8]. Hence, as the battery
pack in BEVs is a significant driver of costs, knowledge about its present
SOH is mandatory and methods for vehicle level battery back diagnosis
necessary [8].

There are many approaches for an in-situ and non-invasive charac-
terization of individual LIB cells under laboratory conditions through
established diagnostic load cycles. The most common are the galvanos-
tatic intermittent titration technique (GITT), electrochemical impedance
spectroscopy (EIS), hybrid pulse power characterization (HPPC) and
voltage-capacity analysis [12]. The latter encompasses differential volt-
age analysis (DVA) [13–16] and incremental capacity analysis (ICA)
[17–19] both analyzing full charge or discharge cycles at low currents.
Both DVA and ICA have proven valuable for the characterization
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of battery cells, i.e. for aging studies [20–22], cell-to-cell classifica-
tion [23,24] or for SOH estimation by machine learning methods [25].
On the vehicle level, however, there are few approaches to characterize
aging in battery packs of BEVs [9]. This paper aims at examining the
transferability of DVA and ICA onto the vehicle level.

1.1. Literature review

The following section summarizes publications in literature that in-
vestigate differential voltage (DV) and incremental capacity (IC) curves
from charging cycles as a suitable method for vehicle level battery
diagnosis. Schmitt et al. [26] reconstruct the voltage curve from partial
charge cycles and perform DVA in different state of charge (SOC) ranges
and varying C-rates. The study tests cells under laboratory conditions,
simulating charging at an 11 kW alternating current (AC) charger moti-
ating applicability on the vehicle level. With this method, degradation
odes and the cell capacity can be estimated accurately going through
range of 20-70% SOC and a low current of 𝐶∕30 enabling a SOH esti-
ation. Weng et al. [27] develop a battery simulation environment to

xamine the applicability of an ICA peak tracking method on a module
ith three parallel connected cells for SOH monitoring. Furthermore,

hey vary the capacities and inner resistances of these cells in the model
o analyze their effect on features of interest (FOIs) in the IC curves.
he method is validated using 30 modules in a laboratory environment.
rupp et al. [28] analytically and experimentally examine ICA in a
odule with series-connected cells. They conclude that features on

ell level dilute on the module level, particularly when single cells in
he module have strongly aged. Hence, outliers in the module can be
etected. The results show that there can be differences in module level
C curves determined by the terminal voltage to superposed voltages
easured for each cell on the battery management system (BMS).

Further publications analyze data from charging events in BEVs to
erive vehicle level DV and IC curves. Wassiliadis et al. [2] overlay
DV curve from a small current lab measurement of a Volkswagen

VW) ID.3 cell onto an AC charging cycle on vehicle level. They
otice that the vehicles’ BMS restricts voltage limits, presumably for
apacity retention, compared to cell measurements in the laboratory.
herefore, shifting is necessary to align the vehicle to cell DV curve.
haracteristics from the cell DVA then match adequately to the vehicle
VA, enabling the estimation of the cell’s chemistry by comparison to

iterature findings. The same test set up was applied by Rosenberger
t al. [29] with a Tesla Model 3 comparing the DV curves shortly after
urchase to a measurement conducted after two years of utilization.
hifts of peak positions in the cell DV curves are observable, possibly
ue to increasingly deviating aging states of the cells. Furthermore, it
s estimated that the measurable capacity loss of the battery pack is
ttributable to the loss of lithium inventory (LLI). Schaltz et al. [10,11]
ransfer ICA from cell to pack level for a BMW i3 and Nissan Leaf.
n their study, characteristics from cell level ICA such as peaks and
alleys generally match with measurements from the vehicle level, with
mall differences notable. A SOH definition is proposed by calculating
charged capacity within a fixed voltage range, due to BMS voltage

imits prohibiting full capacity measurement. Furthermore, FOIs from
he cell level ICA are correlated with the SOH and evaluated by
OIs from the vehicle ICA, showing a suitable match. She et al. [30]
nalyze partial charging cycles from 14 electric buses with a lithium
ron phosphate (LFP) chemistry over a period of 14 months. Hereby,
hey extract the height of an IC peak as a FOI for each cycle that
eclines with increasing mileage. A radial basis function neural network
s trained to predict the peak value from statistical features derived
rom the charging cycles. In a subsequent publication She et al. [31]
xtract the same IC peak for 12 BEVs and match this FOI with cell
easurements. Furthermore, this vehicle level feature is evaluated by
cell level SOH estimator.

The excerpt of publications demonstrates that research increasingly
ocuses on battery diagnostics for BEVs. However, vehicle level di-

gnostics is often a motivation for cell level studies, simulated by

2 
battery pack models or examined by few inter-connected cells in the
lab. Very few publications perform actual measurements on BEVs and
either investigate by DVA or ICA. Especially FOI from IC curves are
often subject to pure statistical analysis. Furthermore, data quality
constraints in BEVs have not been examined, and a comparison of
whether DVA or ICA is more suitable for vehicle level aging diagnosis
is pending. Therefore, this paper addresses these research gaps by
examining the transferability and applicability of both DVA and ICA on
the vehicle level by focusing on standardized AC charging procedures
and data quality constraints. Experiments are set up to compare cell
level FOI associated with aging in LIBs to FOI on the vehicle level
for two state of the art BEVs – the 2021 VW ID.3 and 2020 Tesla
Model 3. Aging is assessed for both vehicles by DVA and ICA after a
utilization period of two years. The overall goal is to further progress
the technological readiness level of both DVA and ICA as vehicle level
battery pack diagnosis methods.

1.2. Contributions

The scientific contributions of the underlying article are summa-
rized as follows:

(a) Applicability of DVA and ICA on vehicle level
The process of applying DVA and ICA on vehicle level is exten-
sively investigated by two BEVs, with different energy levels, cell
chemistries, cell formats and battery pack configurations. Data
quality constraints, as well as the influence of charging profiles
on the utilization of both methods are examined.

(b) Transfer of DVA and ICA from cell to vehicle level
Additional cells from the vehicles under study are acquired and
measured in a battery lab. A comparison is drawn by mapping
DV and IC curves from cell to vehicle level measurements and
analyzing the transferability of characteristic features.

(c) Aging diagnostics on vehicle level by DVA and ICA
The vehicles under study are compared by an initial measure-
ment after purchase, to a state after two years of utilization. The
objective is to evaluate FOIs that correlate with aging on cell
level on their suitability as FOIs on vehicle level.

(d) Open access to all experimental data and code
A repository with data from the examinations is published
openly with this article. This includes all time series of the mea-
surements from the vehicles, as well as the code for processing
the data.

1.3. Layout of the article

The further structure of the article is as follows: Section 2 briefly de-
scribes both principles of DVA and ICA. Section 3 describes the vehicles
under study and the measurement procedures for obtaining data from
small current charging cycles on vehicle and cell level. Section 4 shows
the examination results of the following aspects, as shown in Fig. 1,
with Section 4.1 investigating the effect of charging protocols on DV
and IC curves from cell level measurements. The data quality of vehicle
level measurements is analyzed in Section 4.2. The transfer of DVA
and ICA from cell to vehicle level is portrayed in Section 4.3. Based
on this, Section 4.4 discusses vehicle level degradation diagnostics to
estimate the vehicles’ SOH and Section 4.5 the influence of different
BMS software versions. Section 5 summarizes the findings and Section 6

provides an outlook for further research.
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Fig. 1. Layout of the examined experiments in this article. The examinations are
comprised of cell level as well as vehicle level measurements.

2. Fundamentals

Battery diagnosis with DVA and ICA analyzes the gradients of
the voltage U and capacity Q signals from dis-/charging cycles by
differentiation. Here, only charging is considered, as it is simpler to
apply on the vehicle level and more reproducible, compared to draining
the battery by driving on a chassis dynamometer. Furthermore, a
small charging current or power is applied to reduce the excitation of
overpotentials [32]. Depending on how the voltage and capacity signals
are set into relation, results either in DV (Section 2.1) or IC (Section 2.2)
curves. Both methods are widespread tools for in-situ characterization
of battery cells with the main objective of extracting and analyzing
insightful FOIs correlating with the SOH [18].

2.1. Differential voltage analysis

DV curves, as per Eq. (1), relate the differentiated voltage signal
to the differentiated capacity signal. In other words, DVA enables the
analysis on how the voltage changes due to an increase in transferred
charge.

DV =
dU∕dt
dQ∕dt

≈ 𝛥U
𝛥Q (1)

DVA enables insights into the stage transitions of the cells’ electrodes
at different lithiation levels [13]. Lithiation during charging describes
the intercalation of lithium-ions into the negative electrode (NE), re-
spective deintercalation from the positive electrode (PE), changing the
electrodes’ potential [13]. By definition, the open circuit voltage (OCV)
of a LIB is the difference between the electrodes’ open circuit potentials
(OCPs) shown in Fig. 2(a). Accordingly, the difference between the
3 
electrodes’ DV curves equates to the full cell (FC) DV curve, defined
in Eq. (2).

DVFC = DVPE − DVNE (2)

Detecting characteristic peaks in DV curves indicate the presence of
a single phase inside one of the electrodes that can mostly be unam-
biguously assigned to either the PE or NE [13–16]. This is exemplary
shown with halfcell data from the VW ID.3 (nickel-cobalt-manganese-
oxide (NMC)/graphite) cell under study in Fig. 2(b). The peaks 4L,
3L and 2L are associated with liquid-like (L) intercalation stages of
graphite electrodes and are named according to the number of empty
graphite layers between fully lithiated layers [33]. Another dominant
graphite characteristic is the stage 2 peak with no assumed in-plane
order [26,33]. These graphite peaks are apparent in all cell chemistries
with graphite in the NE which make up around 90% of all LIBs [34].
Characteristic FOIs in this specific NMC chemistry are peaks H1, H2,
and M, where the former two denote to a hexagonal and the latter
a monolithic lattice structure. [35,36]. These features are less pro-
nounced, due to the relatively low nickel content in this composition
(LiNi0.65Mn0.2Co0.15O2) [37]. Ank et al. [38] provide a DV curve of
a nickel rich NMC cell, where these characteristics are visible more
clearly. Other PE chemistries, e.g. LFP do not exhibit any explicit
features for DVA [39]. For deeper insights into phase transitions of
common LIB active material compositions, the interested reader is
referred to further publications [33,35].

Throughout their lifetime, cells progressively age leading to a re-
duced capacity [4]. The origin of the capacity loss can furthermore be
divided into the degradation modes loss of active material (LAM) and
LLI. The former summarizes aging mechanisms taking place at the pos-
itive and negative electrode leading to a reduced capacity of lithiation,
while the latter corresponds to the loss of cyclable lithium no longer
available for charge transfer between the electrodes [4,40]. Tracking
peaks by DVA throughout aging makes it possible to identify degrada-
tion modes by evaluating the electrode capacities at the NE (QNE) and
PE (QPE) to determine LAM as shown in Fig. 2(b). LLI can be observed
by the balancing between electrode capacities (QB). These FOIs are
often integrated into SOH estimation techniques [41]. Further FOIs,
such as the height of the 4L or stage 2 peak can indicate inhomogenities
in the distribution of intercalated lithium in the NE [20].

For practical applications, the differentiation of voltage and ca-
pacity signals is often implemented using numerical approximation
(illustrated by 𝛥 in Eq. (1)), by either forward, backward or central
difference schemes [42]. Alternatively, the current signal I can directly
be inserted in the denominator, due to dQ∕dt = I [2]. Here, the DV
curves are normalized by the nominal capacity Qn, scaling the DV curve
into a regime along the 𝑦-axis around 1V independent of the nominal
capacity. In a battery pack the DV curve is accordingly scaled by
the number of series-connected cells. Normalization can therefore sim-
plify the comparability between different cell sizes. During continuous
charging, the absolute charge signal increases monotonically, so that
𝛥Q ≠ 0 holds and there is no division by zero. Typically, the DV curve
is plotted against the transferred charge signal from a full charging
measurement [13]. Alternatively, DV curves can be plotted against the
SOC, which is the charge signal normalized by the maximum capacity
available according to the present SOH. A disadvantage of these signals
is that both are secondary quantities not directly measurable by a
sensor, but are rather calculated through integration of the current
signal as shown in Eq. (3).

Q = ∫

t1

t0
I dt + Qoffset (3)

Hereby, a full charging cycle reflects the transferred charge from 0-
100% SOC and is evaluated from the lower to the upper cut-off volt-
age at a predefined current which is generally specified in the cell’s
datasheet. Hence, the capacity of a cell can reproducibly be calculated
and the charge signal begins at zero. On the contrary, the transferred
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charge in a partial charging scenario does not cover the same full SOC
range. It can therefore be necessary to estimate an offset Qoffset in
rder to align (partial) charge measurements, e.g. by using a reference.
lotting the DV curves against the SOC signal is equally not optimal,
s determining an absolute SOC is not trivial. Depending on the SOC
stimation method, operational conditions (e.g. extreme temperatures
r dynamic current loads), and differences in relaxation times can lead
o estimation errors [43].

.2. Incremental capacity analysis

The IC curve is defined as the inverse of the DV curve relat-
ng the differentiated charge to the differentiated voltage shown in
q. (4) [18]. Thus, identified valleys in DV curves are peaks in IC
urves, and vice versa, serving as FOIs. IC peaks give insights into the
ransition between electrode lithiation phases. IC curves are commonly
lotted against the voltage signal which is a directly measured property,
o that alignment is not necessary, which is an application advantage
or vehicles under real operation conditions [18,44].

C =
dQ∕dt
dU∕dt

≈
𝛥Q
𝛥U = 1

DV (4)

Inserting Eq. (2) into Eq. (4) makes clear that FOIs from the FC ICA
are not additively superimposed characteristics from electrode ICAs,
but rather result from convolution. Therefore, findings from ICA are
harder to disaggregate and interpret [18]. Nevertheless, peak A in
Fig. 2(a) can be associated with stage transitions at the NE, peak C from
both electrodes and characteristics B and D with the PE [35,45,46].
The position of these peaks and plateaus (e.g. A–D) can be tracked as
FOIs, as well as differences in peak heights (𝛥ℎ), peak widths (𝛥𝑤)
or integrals between voltage boundaries (∫ ) schematically shown in
Fig. 2(c). Clear statements regarding aging are often only possible by
jointly analyzing multiple FOI and their relation to another [18].

During aging, the internal resistance of the cell gradually increases,
e.g. through solid electrolyte interphase (SEI) formation. Following
Ohm’s law, a resistance increase leads to a voltage increase. Assuming
a homogeneous resistance increase over the whole SOC range shifts
the IC curve accordingly, as it is plotted against the voltage signal.
This property can be detected as a FOI by ICA, e.g. by tracking peak
positions throughout the aging process [41].

Normalizing IC curves by the nominal capacity as for DV curves is
possible, but is omitted here as the unit 1∕𝑉 is less intuitive. Some LIB
chemistries (e.g. LFP) inhibit minimal voltage increases over broad SOC
intervals. Differentiating the voltage signal at these plateaus leads to
small differences in the denominator (1∕𝛥U) yielding steep gradients in
IC curves [18,47]. In turn, this imposes high demands on the data qual-
ity and sampling rate in order to capture the relevant characteristics for
further interpretation.

3. Methodology

An introduction to the BEVs under study is presented in Section 3.1.
Further, the test procedure (Section 3.2) and data acquisition (Sec-
tion 3.3) are explained in detail. For a comparison, cell level measure-
ments are conducted and described in Section 3.4.

3.1. Vehicles under test

The experimental vehicles in this paper include a VW ID.3 Pro and
Tesla Model 3 Standard Range Plus. The exact specimens of the VW
ID.3 was comprehensively investigated by Wassiliadis et al. [2] with
an in-depth teardown of the powertrain and battery pack. All presented
vehicles were purchased from a dealership so that they are unmodified
mass-production vehicles and ensure an unbiased examination. The
vehicles under study are briefly described with focus on battery pack
specifications summarized in the Appendix in Table 1.
4 
Fig. 2. Schematic half-cell measurements from three electrode cells [37] (a) Full-
cell (FC) voltage curve from a 𝐶∕50 charging cycle with a NMC cell resulting from the
difference in positive electrode (PE) and negative electrode (NE) OCPs. (b) Full-cell and
half-cell DV curves. Peaks associated with single phases in the electrodes are labeled,
as well as the NE, PE and balancing (B) capacity. (c) The FC IC curve results from the
convolution of electrode IC curves. Peaks are associated with stage transitions in the
electrodes. Typical FOIs for aging analysis by ICA are visualized.

The examined 2021 VW ID.3 Pro (abbreviated as VW) is equipped
with a 58 kWh battery pack. The battery pack architecture consists
of nine modules connected in series, each of which contains 24 cells
in a 12s2p configuration. On pack level, the voltage ranges from
approx. 360-450V [2]. The NMC pouch cells contain a PE composition
with LiNi0.65Mn0.2Co0.15O2 and pure graphite (without silicon) for the
NE [37].

The 2020 Tesla Model 3 Standard Range Plus, referenced as Tesla,
comes with a 55 kWh battery pack and a voltage range of approx.
330-380V [48]. This particular specimen is assembled with prismatic
LFP cells in a 106s1p configuration [48]. The NE is composed of pure
graphite without any silicon content [49].

3.2. Measurement procedure

To enable a fair comparison, it is necessary to set up the vehicle
level measurements as similarly as possible to the cells measured in
laboratory conditions, regarding both the testing procedure or ambient
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conditions. Here, the small current measurement is set in the charging
direction, as the procedure is simpler and reproducible during standard-
ized AC charging. Discharging the vehicles on a chassis dynamometer
in a continuous manner is also possible, but cumbersome.

The vehicles are fully discharged to 0% SOC before the measure-
ment. In the VW however, the SOC displayed in the user interface
(UI) is offset by about 4% compared to the SOC read from the BMS,
presumably due to reserved capacity margins. Therefore, 0% UI SOC is
quivalent to 4% BMS SOC. For the Tesla, the shift between BMS and
I equals 0.2%. In the following, the SOC is solely based on the BMS
ata. Discharging the vehicles is a lengthy procedure, especially for the
W as driving is disabled at 4% SOC. Full discharge is achieved using

he heating, ventilation and air conditioning system similarly to Schaltz
t al. [10,11] and Wassiliadis et al. [50], which takes multiple hours.

The vehicle level measurements are performed with the commer-
ially available charging device Juice Booster 2 (Juice Technology,
witzerland [51]). Depending on the socket type (single/triple phase)
nd the current selection on the charger an AC power in the range
f 1.4-22 kW is supplied. Here, a low charging current is preferred
o achieve a quasi-stationary charging measurements and reduce the
ffect of inhomogeneity in the NE that can dilute FOIs for DVA and
CA [18,20]. Therefore, a maximum single phase charging current of
A is set by the Juice booster limiting the power supply to 1.84 kW. The
ehicles are then fully charged in a temperature controlled environment
t 20 °C until the vehicle terminates the charging session. Both vehicles
ffer power reduction options in the UI to reduce the stress on the
attery which is additionally selected for all measurements. The energy
ontent of the battery pack is evaluated by integrating the charging
ower as defined in Eq. (5).

= ∫

t1

t0
P dt = ∫

t1

t0
U I dt (5)

It is common in the literature to express currents by the C-rate for
better comparability between cell formats. The C-rate is defined as

he current I related to the nominal capacity Cn as shown in Eq. (6)
nd often given in the unit 1∕h [52]. For constant current (CC) profiles
he C-rate is constant and its reciprocal indicates the time span of a full
harging cycle.

-rate = I
Cn

(6)

However, in many vehicle applications not the current, but rather the
power is the set property, e.g. for the demanded power in driving
scenarios or when charging the vehicle using a constant power (CP)
profile. The latter means that electrical power (P = U I) is held constant
throughout the charging cycle. Hence, as the voltage in the battery pack
increases, the current is reduced accordingly. In this case, the C-rate
is not constant with the standard definition. Therefore, the E-rate is
defined by Eq. (7) based on the charging power P in relation to the
battery pack’s net energy En [53].

E-rate = P
En

(7)

For simplicity and as both definitions express the same property,
namely the time for a full charging cycle, the nomenclature here is
reduced to the more custom C-rate. Hence, when comparing CC to CP
measurements, it is made sure that the charging time (inverse of the
C-rate or E-rate) is equal. Following this definition results in C-rates of
𝐶∕45 for the VW and 𝐶∕57 for the Tesla with the given charging power.

.3. Data acquisition

For the Tesla, a controller area network (CAN) logger is connected
o the vehicle, recording all bus traffic for later conversion to physical
alues through a .dbc file available on GitHub [54]. For the ID.3,
owever, unified diagnostic services (UDS) requests are sent through a
elf-built data logger [55] connected to the OBD II diagnostic interface
5 
to query individual values in a frequency of 1000ms. Responses from
the gateway board are requested by addressing the unique message
identifiers (IDs) of the packs’ voltage, current and SOC, additional to
all cell voltages. The response frequency slightly deviates during and
between measurements, presumably due to bandwidth limitations in
the gateway board for handling requests. Practically, a sample of each
requested signal is logged in a time span of approx. 10 s, leading to
a sample frequency of 0.1Hz. By analyzing the signals’ discretization,
an estimated resolution can be given for the pack voltage (±0.25V)
and pack current (±0.01A). After completion of the measurement, the
signals are synchronized onto a single time vector by interpolation.
The interested reader is referred to Merkle et al. [56] for an in-depth
descriptions of the data acquisition process.

3.4. Cell measurements

Additional battery cells from the vehicles under study are acquired
for comparative cell level measurements. It is unknown how these
modules were stressed beforehand, as they are not pristine specimens.
Both cells are connected to channels in the MRS 6 V battery cycler
manufactured by BaSyTec GmbH (Germany, ±600A per channel) with
a current and voltage resolution of ±300mA and ±0.3mV, respectively.
During measurements, the cells are placed inside a VC3 4100 thermal
chamber by Vötsch GmbH (Germany) to ensure a constant ambient
temperature during testing. The cell teardown and preparation for
laboratory measurements is described closely by Wassiliadis et al. [2].
It is noted that the pouch cells in the VW are not disassembled from
the module housing to sustain the original cell compression.

The cells are initially discharged to the lower cut-off voltage by
a constant current constant voltage (CCCV) profile and subsequently
relaxed for 2 h prior to the small current charging measurements for
acclimation and relaxation effects to fade away. The cells are then
charged until the upper cut-off voltage is reached either by a CC or
CP pattern, depending on the examination. Furthermore, the charging
current or power is chosen to match the vehicle level measurements.
Datapoints are sampled at a rate of 1 s (1Hz), or when a voltage delta
of 4mV is detected.

4. Results and discussions

Firstly, CC and CP charging profiles are compared on the cell level in
Section 4.1. In Section 4.2, data quality of vehicle level measurements
are examined. The transferability of the voltage curves, DVA and ICA
from cell level to vehicle level is investigated in Section 4.3. Lastly,
aging of the BEVs under study is examined in Section 4.4 and the
influence of BMS software versions in Section 4.5.

4.1. Charging profiles

A CC profile is a typical charging profile for LIBs in lab tests
holding the current constant throughout the entire charging session.
Furthermore, the CC phase is often followed by a constant voltage (CV)
phase to further charge the cell without exceeding the upper cut-off
voltage limit. Out of necessity, e.g. energy conservation, however, a
CP profile is common when charging BEVs at AC chargers. In terms
of the calculation of DV and IC curves (Section 2), pure CC charging
is favorable, as the derivative of the charge signal is constant (𝑑𝑄∕𝑑𝑡 =
𝐼 = 𝑐𝑜𝑛𝑠𝑡.), while only the voltage signal changes significantly. Distinct
FOIs can therefore be unambiguously attributed to thermodynamic
voltage changes only. Furthermore, dynamic effects due to changes in
the current are mitigated. Here, the aim is to investigate effects on FOIs
for DVA and ICA from CP charging data.

Fig. 3 compares CC and CP protocols for a single VW NMC pouch
cell in the battery lab. Fig. 3(a) depicts the current profiles of a 𝐶∕45
full range CC (1.7A) and CP (6.6W) charge with the current/power
determined by Eq. (6) and Eq. (7). A second 𝐶∕6 measurement with
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Fig. 3. Comparison of the effect of CC and CP protocols on FOIs for DVA and ICA. The
easurements are conducted on the same VW NMC pouch cell in the battery laboratory.

a)/(b) Current and power profiles for a 𝐶∕45 and 𝐶∕6 charging measurement. (c) CC and
CP voltage curves for both C-rates. (d) Voltage error between CC and CP measurements.
(e)/(f) Associated CC/CP DV and IC curves.

a higher current/power (13A/49.2W) is shown in Fig. 3(b). All mea-
surements are conducted between the voltage range from 2.8-4.2V. The
difference of the applied currents is the greatest at the beginning and
end of charge with and maximum of 0.6A and 3.1A, respectively.
6 
In Fig. 3(c), the corresponding 𝐶∕45 and 𝐶∕6 voltage curves are
visualized. The effect of the higher current can be seen in the 𝐶∕6
measurement as higher overpotentials shift the curve towards higher
voltages. Therefore, the cut-off voltage termination criterion is reached
sooner leading to a delta of 4Ah between measurements. However, CP
and CC pseudo open circuit voltage (pOCV) data generally aligns well
for both current levels evaluated by the voltage difference shown in
Fig. 3(d). Overall, an absolute average difference of 1.1mV, respective
1.3mV is measured. The largest deviation between voltage signals is
visible at the start and end of charge in the 𝐶∕6 measurement following
the CP current load.

To elaborate distinct differences in the charging protocols, DVA of-
fers deeper insights shown in Fig. 3(e). The effects of higher C-rates can
be seen more clearly in the close up plots where the 𝐶∕6 measurement
shows a dilution of features [57,58]. Especially the graphite peaks (4L,
3L, 2L and stage 2) dilute due to increased inhomogeneity of the lithium
distribution in the NE, as diffusion processes take longer to equate for
local lithium concentration gradients [20]. Similar findings can be seen
in the IC plot in Fig. 3(f), where additionally the 𝐶∕6 curve shifts to
higher voltages due to more significant overpotentials from the higher
C-rate.

With the insights from DVA and ICA, it seems as if neither the 𝐶∕45,
nor the 𝐶∕6 CP measurement deviates strongly to their respective CC
counterparts. When examining the close-ups, marginal differences can
be seen between CP and CC measurements around areas where the
voltage differentiates the most. For instance, the CP DV curve is below
the CC DV curve in the 𝐶∕6 measurement between 60-78Ah due to
the decreasing current at this SOC interval. Nonetheless, both charging
profiles make it possible to distinguish insightful FOIs from DVA and
ICA so that CP measurements on vehicle level are not necessarily a
drawback. Further measurements can be conducted at higher C-rates,
but it is doubtful that the effect of a CP charging profile exceeds the
influence of inhomogeneity imposed by increased C-rates.

4.2. Data analysis

The differentiation of sensor data, as necessary for DVA and ICA,
amplifies noise in the derived signal, hampering the extraction of in-
sightful features. Prefiltering the voltage and charge signals is therefore
necessary to smooth the signals and reduce noise. Postfiltering DV and
IC curves is often also required to enhance the visibility of FOIs. Care
must be taken when smoothing the signals, as characteristics can be
altered leading to false interpretations [18,44,59].

Fig. 4 depicts the vehicle level DV and IC curves from a 𝐶∕57 charging
measurement with the Tesla. The LFP cell in the Tesla is known for
its flat voltage profile, i.e. showing small voltage increases over broad
SOC intervals [60,61]. Capturing changes in the voltage and current
signal is essential for calculating both methods, placing high quality
demands on the sensors, especially for LFP cells, to provide sufficient
resolution, precision and suppression of noise [18,47]. However, the
data recorded from the vehicles under study originates from on-board
sensors with unknown specifications. Therefore, the results shown for
the LFP cell demonstrate an edgecase demanding high data quality and
aims at investigating vehicle sensor requirements.

In Fig. 4(a), the raw DV curve is plotted where neither the volt-
age nor the capacity signal is prefiltered. For the sake of visibility
only every 100th datapoint is shown and it is clear that no charac-
teristics can be extracted out of this signal. The noise is visualized
in a Bode plot in Fig. 4(b) up to the highest resolvable (Nyquist)
frequency (fnyquist = 2 ⋅ fsample), where the majority of high amplitude
disturbances are discernible in the higher frequency regime (≥ 1mHz)
of the signal. The same statements holds for the raw IC curve, calculated
by the inverse of the DV curve, showing similar effects in Fig. 4(c) and
(d). Hence, filtering vehicle data is essential and cannot be omitted.

A moving mean filter is applied to the charge and voltage signal in

forward direction. The filter induced shift acts on the same timescale of
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Fig. 4. Influence of filtering vehicle level DV and IC curves shown for a 𝐶∕57 charging measurements with the Tesla. Tesla’s LFP cells have a characteristic flat voltage profile
placing high demands on the data quality. (a)/(c) DV and IC curves without filtering, prefiltering the voltage and capacity signals and additional postfiltering. (b)/(d) Corresponding
Bode plots plotted against the frequency.
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both signals which eventually cancels out deriving the DV or IC curves.
It is noted that other authors directly filter the current signal instead
of the charge signal [2]. However, numerically integrating the current
to calculate the charge signal suppresses noise which in turn increases
the effectiveness of the applied filter.

The window size of the filter is set to 1% of datapoints, to stan-
dardize the filtering over measurements, C-rates and capacities. Such
preprocessing already improves the effectiveness of DVA/ICA signif-
icantly reducing the influence of high frequency noise visible in the
Bode plots. However, remaining amplified noise still makes extraction
of distinct FOIs difficult. Furthermore, it becomes clear why extracting
the IC curve from LFP cells is difficult, as the flat intervals in the
voltage profile leads to sharp extrema. Additionally, a low voltage
resolution yields unclear peaks as the voltage difference is close to
zero and noise leads to dU∕dt ± 0. Postfiltering finally yields a DV
curve suitable for FOI extraction further suppressing high frequency
noise. To achieve that, the DV curve is again filtered by a moving
mean filter with a window size of 1% of datapoints in forward and
backward direction to equalize filter induced shifts. Other filters, such
as Gaussian filtering or Savitzky–Golay filters are examined in other
publications [44,59]. The reason for calculating the IC curve from the
inverse of the (postfiltered) DV curve is because filtering works more
effective with smoother gradients, as steep gradients can falsely be
evened out. Undefined values in the IC curve are subsequently deleted
and outliers omitted through an interquartile range filter. The latter
deletes datapoints with values outside the 5th to 95th percentile of
ordered IC values.

Concerning data sampling, the sample rate is the only variable
parameter during the vehicle measurements and is fixed to 10 s (sample
requency of 100mHz). Undersampling a signal can lead to temporal
liasing which can distort and filter out FOIs [62]. This effect is
xamined by reducing the sample rate of the 𝐶∕57 measurement above.

ig. 5(a) shows the DV curve with sample rates between 10-3600 s. The w
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close-up plot focuses on the stage 2 peak which is relevant for cal-
culating electrode capacities and evaluating lithiation in-homogeneity
of the NE (Section 2.1). The sample rate is sufficiently high for a
precise reconstruction, if this peak can be captured without distortion.
Qualitatively, sample rates below 300 s (3.3mHz) seem workable before
the smooth curvature becomes edgy and reduces in height. A rule of
thumb can be postulated by generalizing this sample rate with the
applied C-rate that a sample point is necessary for a delta change in
the capacity (CC charging) or energy (CP charging) of approx. 0.2%.
The distorted peak in Fig. 5(a) might exclude exact statements about
battery internal processes, but the x-position of the peak can still be
approximated as a FOI for all evaluated sample rates. Therefore, DVA
is insensitive against these examined sample rates when examining the
peak’s x-position.

Fig. 5(b) and (c) depict the IC curves for sample rates 10-300 s
nd 900 s, respectively. As for DVA, a sample rate of 300 s is sufficient
or resolving the curve. Lower sample rates however induce noise so
hat identifying peaks is ambiguous indicating that (LFP) ICA is more
usceptible to the sample rate than DVA. Further IC curves are omitted,
ue to extreme noise.

As described above, these results show an edgecase of vehicle level
VA and ICA with LFP cells, due to the flat voltage profile. Nonetheless,

he findings indicate that not necessarily the sample rate, but rather
oise and the resolution of the sensors are limiting. It is shown that
sample point every 10 s is sufficient and even sample rates as low

s 300 s between samples are possible for this C-rate. Overall, care
ust be taken when extracting FOIs, especially for ICA, as filtering

s indispensable. Furthermore, DVA is more robust, as peaks identify
oltage changes which are easier to resolve. Also, DV curves exhibit
ore moderate gradients, which are more forgiving in sampling and

iltering requirements. Lower data quality does not hamper the ap-
roximation of peak position, e.g. for determining electrode capacities,

hereas in-depth insights become difficult to examine. In contrast,
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Fig. 5. Influence of reducing the sample rate of a 𝐶∕57 Tesla measurement. (a) DV
curves with sample rates 10-3600 s. A sample rate of 300 s (3.33mHz) is sufficient for
capturing the stage 2 peak smoothly. (b)/ (c) IC curves for sample rates 10-300 s and
900 s, respectively.

peaks in IC curves resemble plateaus in the voltage curve requiring a
high resolution by appropriate sensors where noise further complicates
the calculation. IC curves can nevertheless be calculated and yield clear
results, especially for cell chemistries with no flat voltage intervals
like the NMC cells in the VW shown in Fig. 2(c). Hence, knowing a
BEVs cell chemistry and/or sensor specifications can determine if ICA
is suitable for vehicle level diagnostics or not. If high quality data
cannot be ensured, it is recommended to rather observe trends in peak
movement instead of absolute FOIs and extract secondary features, such
as integrals between a voltage interval or focus on DVA only.

4.3. Transfer from cell to vehicle

In this section, transferability of DVA and ICA from cell to vehicle
level application is examined. Hereby, a similar charging process and
C-rate is set up for a fair comparison between cell to vehicle level
measurements. In Fig. 6(a) and (d) the vehicles’ voltage curves are
overlaid onto the voltage curves of the respective cells and additionally
shifted by matching the vehicles’ lowest sampled voltage value. The
shift is necessary for a direct comparison of FOIs, as most notably
the lower cut-off voltage differs between the vehicles and cells. Safety
functions running on the BMS presumably limit the voltage to fall
below a threshold of approx. 360V for the VW and approx. 330V for
he Tesla to possibly mitigate deep discharging. The constant shift can
e used to quantify the amount of retained charge which turns out to be
.4Ah for the VW and 4.4Ah for the Tesla. The overlaid signals exhibit
imilar behaviors, although minor deviations are visible. Furthermore,
he initial constant shift does not correct for any differences in the total
apacity which is larger for the cell measurements in the laboratory.

The DV curves in Fig. 6(c) and (d) enable the examination of
ifferences between the cell and vehicle level more closely. The FOIs in
he shifted vehicle DV curves mostly coincide well in their positioning,

ut with less pronounced extrema. In terms of NE features, peak 3L in
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the VW’s DV curve is difficult to detect on cell level and completely
blurs out in the vehicle DV curve. The same holds for the 2L peak in
both vehicles’ DV curves. In VW’s DV curve, stage 2 peak, important for
determining the NE and balancing capacity, is not only lower in height,
but also significantly shifted towards the left. The shift could indicate
a lower amount of active material or overhang effects in the passive
parts of the NE leading to shifts of FOIs [63,64]. The lower maxima is
also observed by Reiter et al. [65] from DVA with cells in a module
where they conclude that varying NE capacities between cells results
in a module level stage 2 peak decrease. Furthermore, the distribution
of the current between parallel cells induces inhomogeneity leading to
the decrease and widening of this maxima [66,67]. As the Tesla has no
parallel connections, this effect does nor occur. This could mean that
battery packs with many parallel connected cells can be a disadvantage
for diagnosis with DVA, where further measurements are necessary to
underline this assumption.

Concerning PE features, the H2 peak in VW’s DV curve is not
precisely identifiable in height or position and can only be roughly
estimated, similar as in the cell level DVA. No statements about PE FOIs
can be made from DVA of the Tesla, as its LFP cell has no significant
PE feature.

As IC curves are generally plotted against the directly measured
voltage, shifting between cell and vehicle should not be necessary.
VW’s cell and vehicle IC curves in Fig. 6(e) align well and similar
observations can be given as from DVA. Peak A and C are influenced by
stage transitions in the graphite electrode showing a similar decrease
of the extrema like the NE features from DVA. The maximum of peak B
is difficult to resolve precisely due to the voltage resolution in this SOC
regime but matches well with the cell level peak. Plateau D indicates
processes in the PE matching well in position and height.

The IC curve of the Tesla in Fig. 6(f) exhibits a constant shift
over the entire voltage signal. The cause of this offset is unknown,
but could be due to summed measuring errors from the cells’ voltage
sensors or due to Ohmic resistances in the battery pack, e.g. connectors
between the cells [50]. The latter can be estimated by a pseudo-
resistance calculated by dividing the voltage difference of the peaks
B by the applied current. This would result to approx. 200mΩ on
pack level or, considering two connectors per cells and two terminal
connectors, a resistance of 0.95mΩ between cells across laser welded
aluminum bus bar connectors [49]. However, this value is higher than
typical contact resistances for this manufacturing process [50] and
presumably further resistances exist in the system. Canceling the shift
leads to matching peak positions in the IC curves, except for peak A
in the close-up showing differences in the NE which is comparable
to the described effects discussed above for the VW. Comparing the
heights of the remaining peaks is vacuous due to low data quality (see
Section 4.2). The VW does not show this constant shift possibly due
to lower Ohmic resistances of the connectors and a lower voltage drop
across the parallel cell assembly.

From the findings above it can be concluded that it is possible to
transfer both DVA and ICA onto the vehicle level which is the basis
for potentially enabling battery pack SOH assessment similar to aging
studies on the cell level, but limitations must be accepted. From DVA,
insights into the electrodes are more accessible enabling the extraction
of FOIs for deeper analysis of the battery’s internal state. Peaks are
detectable, but generally less pronounced. Nonetheless, the important
stage 2 peak feature is clearly identifiable in both vehicles. Here, PE
features from the VW DVA are difficult to extract due to this particular
NMC composition. It is assumed that nickel-rich NMC compositions
with generally more pronounced PE features leads to more visible
FOIs on the vehicle level. Furthermore, parallel cells in battery packs
dilute characteristics, with further experiments necessary to quantify
this observation.

Furthermore, cell level measurements in the lab can be operated
between larger voltage ranges than the cells in BEVs so that shifting

is necessary to enables a comparison between BEV and cell level DV
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Fig. 6. Comparison of cell level to vehicle level measurements for both the VW (left column) and Tesla (right column). (a)/(b) Vehicle and cell level measurements with C-rates
∕45 and 𝐶∕57, respectively. (c)/(d) Vehicle and cell DV curves with labeled single phase stages. (e)/(f) Vehicle and cell IC curves with labeled stage transitions.
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urves. For this, a reference must be defined, especially in prospect of
eviations between measurements of multiple vehicles or for aligning
V curves from partial charging events. FOIs from ICA show similar

indings as for DVA and matches well for the VW and Tesla. Alignment
hould not be required for IC curves as they are generally plotted
gainst the voltage signal. However, the voltage can be influenced
y secondary effects such as Ohmic resistances in the battery pack,
hat can lead to shifts which must be canceled out. All in all, there
s no generally favorable method for BEV diagnostics, as both have
heir (dis-)advantages and should jointly be examined for analyzing the
attery pack and extracting FOIs.

.4. Aging

For analyzing vehicle level aging, the VW and Tesla are measured
hortly after purchase and again after two years of usage with mileages
f approx. 32 600 km and approx. 26 300 km, respectively. Despite the

short period of time between the measurements, aging effects are
captured as shown in Fig. 7. Hereby, the aged DV curve is aligned to

the initial DV curve by the lowest recorded voltage. c
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The initial battery pack of the VW contains 60.6 kWh, whereas
the aged measurement yields 55.0 kWh. Based on the net energy from
Table 1, the SOH decreases from 104.4% to 94.9%. In terms of capacity
this yields a loss of 12.1Ah which appears to be extreme considering
the mileage. The energy storage capability of the Tesla reduces from
57.0 kWh to 55.1 kWh, equivalent to 108.6% and 105.0% SOH, respec-
tively. This yields a capacity loss of 4.9Ah. It can be seen that even
after this short time of usage, aging is present.

In Fig. 7(a) and (b), capacity loss is visible as a contraction of
the aged DV curves. The electrode capacities are calculated as FOIs
for DVA from the initial and aged measurement as shown in Fig. 2.
The differences in electrode capacities are labeled in these figures and
arrows indicate the shift direction to identify acting degradation modes.

The NE capacities QNE slightly change in both vehicles and even
ncreases for the VW. Therefore, no significant loss of NE capacity or
oss of active material at the negative electrode (LAMNE) is assumed
t these mileages which fits cell level aging studies with comparable
tress factors [21,68]. The wider stage 2 peak can be due to different
nhomogeneity levels of the NE [20]. It can also be an indicator for

alendar aging effects [69], which generally fits the usage of private
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Fig. 7. Comparison of an initial measurement from the VW (left column) and Tesla (right column) with a measurement after two years of usage. (a)/(b) Comparison of vehicle
DVAs from the initial and aged vehicle state. The difference in the capacities 𝛥QNE, 𝛥QPE and 𝛥QB are labeled and the direction of the peak shifts indicated. (c)/(d) Comparison
f vehicle IC curves from the initial and aged vehicle state. The stage transitions are labeled. The close up plots magnify the only changing FOI. The upper cut-off voltage in the
W was restricted during the aged measurement, which is indicated by the vertical arrow. The lower part of the voltage signal is cropped for better visibility, due to numerical
scillations.
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assenger cars that are mostly parked [70]. Hereby, the PE’s M phase
hifts towards the left below the stage 2 peak increasing its height, as
result of LLI. Coherently, this cannot be observed for the Tesla with

o PE FOI.
A change of the PE capacity observed from the VW DVA is difficult

o extract as the H2 peak is not clearly pronounced and superimposed
y numerically caused oscillations. The peak is evaluated to the best
f our ability indicating loss of active material at the positive electrode
LAMPE) of 𝛥QPE ≈ 4.7 A h. However, the voltage window of the VW
easurement, seen in Fig. 7(c), shows that the upper cut-off voltage is

estricted compared to the initial measurement indicated by the vertical
rrow, presumably by the BMS and possibly as a safety measure to
estrict impermissible operating conditions. This restriction could also
e seen in repeated measurements and is likely also responsible for
decrease of available capacity. This in turn would also affect the

xtraction of the capacity feature QPE. Cross-validating by additionally
onsidering FOIs from ICA provides clarity. Hereby, degradation maps
rom Dubarry and Ansean [18] give insight of peak evolution from

graphite/NMC532 cell comparable to the cell chemistry in the VW
hat gives the following interpretation. LAMPE can be excluded as
he valley feature D stays the same. Hence, 𝛥QPE ≈ 0 Ah is more
ealistic, meaning this feature is falsely altered due to BMS interference.
t is more probable, but can only be assumed, that the shift 𝛥QPE
ctually resembles LLI but falsely indicates LAMPE given the QPE feature
efinition. Hence, the VW most likely lost 3.5Ah (+1.2Ah–4.7Ah),
hich is in a similar range as the Tesla. This yields a more realistic
OH estimate of 101.6%, and 8.6Ah could have been further charged
f the same upper cut-off voltage had been reached.

The voltage limits do not change in the Tesla, but a PE capacity
annot be evaluated from DVA, due to the lack of a PE feature. Though
10 
imilar findings from ICA can be compared to a LFP degradation
ap [18]. LAMPE can be excluded as peak A shifts to the right and
pwards while peaks B and C stay the same [18].

The most significant change within both vehicles can be assigned
o the electrode balancing capacity QB associated with loss of active
ithium, either reversibly due to overhang effects in the NE and inho-
ogeneous lithiation or irreversibly by LLI, which are discussed more

losely in the following.
During charging it can occur that charge is stored in the NE’s

verhang, unless the overhang is already full prior to the measurement.
omparing measurements with full and empty overhangs then falsely
ppears as a loss/gain of capacity [67]. The share of overhang effects
n the NE on the total loss of active lithium can only be estimated,
ut is assumed to play a minor role as the passive area of the NE only
akes up 2.5% in the VW [37] and 7.3% in the Tesla [49] whereas

he overhang is furthermore only partially lithiated [64]. It remains
nclear if overhang effects are measurable on vehicle level as it acts on
significantly smaller scale than the active electrode area in these large

ormat LIB cells. Further vehicle measurements are therefore necessary
o quantify this statement.

This means the majority of irreversible capacity loss is attributable
o LLI. The same statement can be given by tracking the evolution of
eaks by ICA. Peak A in VW’s IC curve is sensitive to LLI and LAMPE,
hereas the latter is already excluded from the previous findings.
herefore, the slight shift of the peak towards higher voltages indicates
LI. If LAMNE can be excluded, e.g. here by DVA, then the shift of
eature C in VW’s IC curve towards higher voltages is also attributable
o LLI. The ICA of the Tesla shows that only the first peak shifts towards
igher voltages which strongly correlates with LLI. Furthermore, the
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inner resistance increase can be neglected for both vehicles as no
constant shift between IC curves is detectable.

All in all, it can be assumed that LLI is the main degradation mode
for actual irreversible capacity loss. This aligns well with cell aging
studies in literature [21,68], as the growth of passivation layers like
SEI predominantly takes place at an early stage of aging and directly
causes LLI. However, here, LLI is not the sole reason for the total loss
of capacity.

This examination shows that it is possible to extract FOIs from
vehicle level DVA and ICA that have thoroughly been investigated
by cell level aging studies in literature. However, secondary influence
superimpose irreversible aging such as interference of the BMS that
can alter FOIs, as shown for the capacity feature QPE. Therefore, it
is challenging to precisely disaggregate all effects of capacity loss
especially when only examining either DVA or ICA. Here, a coherent
picture could be created by a joint analysis of both DVA and ICA.

In the case of the VW, the estimated SOH might be close to the
actual net energy of the battery pack but no longer coincides with the
achievable range of the vehicle due to the voltage restrictions. The
latter is, however, the more relevant parameter for a vehicle operator
or fleet manager. Nonetheless, vehicle level battery diagnosis with
DVA and ICA holds great potential for battery pack diagnosis during
charging and further research is necessary, especially for evaluating
reproducible FOIs which might only be suitable for statistical SOH
models, e.g. machine learning.

Despite the disadvantages and limitations of vehicle level DVA
and ICA, a diagnostic charging cycle is proposed. Assuming LLI is
the dominant degradation mode in BEVs, which is likely throughout
the first years of usage, then it is sufficient to partially charge the
vehicles with a low C-rate from a mid-range SOC around 50% SOC
to the upper cut-off voltage at 100% SOC (assuming the upper cut-
off voltage does not change). Capturing the voltage curve in this
interval and performing DVA makes it possible to extract the balancing
feature QB which correlates with LLI. An advantage of partial charging
sessions is the simple implementation and applicability in real world
usage scenarios as BEVs must regularly be charged, often many hours
over night. Performing this diagnostic charging procedure in periodic
intervals makes it possible to quantify and track the evolution of
QB over time from DVA, as the stage 2 peak has been detectable
throughout all measurements. In addition, ICA can be used for cross
validation, especially when voltage boundaries change. Nevertheless,
if LAM occurs, it must be ensured that both a NE and PE feature can
be detected, and charging through a wider SOC range is necessary.

4.5. BMS software versions

After the charging measurements discussed in Section 4.4 were
conducted, VW announced that the ID.3 under test would be updated to
ID.Software version 3.2. The General German Automobile Association
(ADAC) conducted experiments with this software version, observing
a different behavior in battery pack applications so that it can be
assumed that the BMS software is also updated [71]. VW themselves
do not disclose precise changes made [72]. The proposed measurement
procedure was repeated after the update to analyze potential effects on
the battery pack. A chronology of the VW’s software versions and un-
derlying measurement dates are given in the Appendix in Table 2. From
this measurement, it could be seen that the upper voltage restriction
discussed in Section 4.4 was lifted, and more capacity could be charged
into the battery pack, shown in Fig. 8, yielding a transferred energy of
59.40 kWh or an SOH of 102.5%. Comparing this value to the derived

SOH estimate from the joint assessment with DVA and ICA gives a
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Fig. 8. Charged energy from measurements with different software versions. The SOH
estimation technique explained in Section 4.4 yields a similar result as the measurement
without a restricted upper cut-off voltage showing the robustness of a vehicle level SOH
estimation with DVA and ICA.

deviation of 0.5%, showing that a realistic SOH can be determined using
vehicle level DVA and ICA despite external influences.

5. Summary and conclusion

This study investigates the transferability of differential voltage and
incremental capacity analysis from cell to vehicle level as an in-situ
diagnostic method during charging. Both cell level, as well as vehicle
measurements are conducted to compare similarities and differences in
DVA and ICA. For the vehicle measurements, the two BEVs VW ID.3
and a Tesla Model 3 are measured during AC charging to capture
the vehicle’s voltage curve. Overall, DVA and ICA can successfully be
performed on the vehicle level from charging measurements, however
with limitations.

The data quality from the vehicles’ on-board sensors is lower than
in laboratory environments so that noise and the sensor resolution
impede vehicle level DVA and ICA. Special care must be taken when
filtering out noise from the signals so that FOI are not altered. ICA
can be challenging, especially for LIBs with flat voltage profiles, as
peaks in the IC curves stem from plateaus in the voltage curve that
must be resolvable by the voltage sensor. It could be shown by lab
measurements that a CP charging profile, common during AC charging
of BEVs, does not prevent the use of DVA and ICA but marginally alters
FOIs. The transferability of cell to vehicle level application is shown, as
characteristic FOIs, such as peaks and valleys, are reproducible on the
vehicle level, however less pronounced. This is especially visible for the
battery pack of the VW, where the parallel connection of two cells in the
battery pack dilute features, due to variations of NE capacities between
cells in the battery pack and an inhomogeneous current distribution. A
constant shift is notable between the IC curves of the Tesla compared
to the cell level, possibly due to Ohmic resistances in the battery pack.

Vehicle measurements are performed shortly after purchase and
again after a period of two years to analyze aging by DVA and ICA.
Despite the rather short period of time, a significant reduction in SOH
is detected. LLI, e.g. through SEI growth, seems to be the dominant
aging mechanism in both vehicles, whereas overhang effects and BMS
interference potentially also lead to a capacity reduction. Care must
also be taken when BMS software versions are updated that can alter
the behavior of the battery pack. Nonetheless, the evolution FOIs
behaves similarly to findings in cell level aging studies. A diagnostic
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cycle is proposed as it could be sufficient to detect LLI by partial
charging between the stage 2 peak and the upper cut-off voltage
between 50-100% SOC to calculate the balancing feature QB for a SOH
estimation.

6. Outlook

Further measurements are necessary to examine the robustness and
generality of vehicle level DVA and ICA, e.g. by repeated measurements
of the same vehicle or by conducting measurements in a fleet of a single
vehicle model. Furthermore, LIBs are strongly influenced by external
parameters, such as high C-rates and low temperatures which could be
further examined on their effect on both methods.

The voltage across each serial cell in the battery pack assembly was
additionally recorded during the measurements. Hence, it is also possi-
ble to calculate the DV and IC curves for each serial cell assembly inside
the pack. This can enable an outlier detection for predictive main-
tenance use cases, e.g. locating faulty cells and scheduling workshop
repairs [73].

In perspective of the next generation communication norms, open
charge point protocol (OCPP) 2.0.1 [74] and ISO 15118-20 [75] will
provide closer interaction between direct current (DC) charging stations
and BEVs enabling the development of tailored diagnostic cycles [74,
76]. Thinkable are adapted charging cycles, e.g. sections of reduced
power around certain FOIs or vehicle level HPPC to precisely extract
FOI for an accurate SOH estimate.
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Appendix A. Vehicle specifications

Table 1
Overview of battery pack and cell specifications from the VW and Tesla under study.

Domain Attribute VW Tesla Unit

Battery pack

Gross energy 62a 55a kWh
Net energy 58a 52.5a kWh
Voltage range 360–450b 330–380e V
Serial cells 108b 106a –
Parallel cells 2b 1a –

Battery cell

Energy density 268c 163d Whkg−1

Nom. capacity 78c 161.5d Ah
Voltage range 2.8–4.2c 2.6–3.6d V
Cell format pouchc prismaticd –
Chemistry C/NMCc C/LFPd –

a EV Database (VW [77], Tesla [48]).
b Wassiliadis et al. [2].
c Günter and Wassiliadis [37].
d Stock et al. [49].
e Measured data.

Appendix B. VW ID.3 software updates

Table 2
Chronology of the VW ID.3’s software updates and measurement dates.
The software updates were applied during scheduled workshop stays.

Software version Update Measurement

ID.Software 2.0 2020-12-01 2021-02-08
ID.Software 2.1 2021-04-08 –
ID.Software 2.3 2021-11-04 –
ID.Software 2.4 2022-12-06 2023-06-16
ID.Software 3.2 2023-09-27 2024-05-22
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